Usually we set the expected output for some given input
// Specs2 example
class HelloWorldSpec extends Specification {
(...)
def e1 = "Hello world" must haveSize(11)
}
A property is set for any input
val prSqrt: Prop = forAll{(n: Int) => scala.math.sqrt(n*n) == n}
val notPrSqrt: Prop = exists{(n: Int) => scala.math.sqrt(n*n) != n}
"(...) ScalaCheck can be used to state props about isolated parts - units - of your code (usually methods)"
Mostly, this refers to testing pure functions, i.e. with no side-effects, especially changes on state.
Logically
val pOr:Prop = p1 || p2
val pAnd:Prop = p1 && p2
val pEq:Prop = p1 == p2 // p1 p2 both pass, proved or fail
val pIm:Prop = p1 ==> p2 // if p1 holds, then p2 must hold
By grouping
object SomeSpec extends Properties("SomethingImportant") {
property("p1") = forAll{...}
property("p2") = forAll{...}
...
}
object FullSpec extends Properties("TheWholeBunch") {
include(SomeSpec)
include(AnotherSpec)
...
}
val concatStrPr: Prop = forAll {(s1:String, s2:String) =>
val concat = (s1+s2);
concat.endsWith(s2) &&
concat.startsWith(s1) &&
concat.size == s1.size + s2.size
}
concatStrPr.check // <-- cheching!
val sumListPr: Prop = forAll {(l:List[Int]) =>
(l.sum > 0) ==> (l.indexWhere(_ > 0) > 0)
}
sumListPr.check
Not really what we expected, huh?
Properties are subtle. Or, rather, our domain is
Ok, but... how is the 'magic' done?
Create random values (of any kind)
Used by ScalaCheck to generate test cases
Can be used in any other application or testing environment
class Gen[+T]{
(...)
def sample: Option[T]
(...)
}
val g1: Gen[Int] = Gen.choose(0,10)
val g2: Gen[Double] = Gen.choose(0,0.5)
val g3: Gen[Int] = Gen.chooseNum(-10,10)
val g4: Gen[Double] = Gen.posNum[Double]
Gen.alphaStr: Gen[String]; Gen.numStr: Gen[String]
Gen.identifier: Gen[String]; Gen.uuid: Gen[java.util.UUID]
val g5: Gen[String] = Gen.oneOf("Meat","Vegs")
val g6: Gen[String] = Gen.frequency((4,"Meat"),(1,"Vegs"))
val g7: Gen[Seq[String]] = Gen.someOf("Apple", "Orange", "Banana")
// Applicable also with other gens
val g8: Gen[Int] = Gen.frequency((4,Gen.choose(0,10)),
(1,Gen.choose(10,100000)))
val unifRand: Gen[Int] = Gen.choose(Int.MinValue,Int.MaxValue)
val gL1: Gen[List[Int]] = Gen.listOf(unifRand)
val gL2: Gen[List[String]] = Gen.listOfN(5,Gen.alphaStr)
val gA: Gen[Array[Int]] = Gen.containerOf[Array,String](unifRand)
val gS: Gen[Set[Int]] = Gen.containerOfN[Set,Int](10,unifRand)
val gT: Gen[(Int,Int)] = Gen.zip(unifRand,unifRand)
val gM: Gen[Map[Int,String]] =
Gen.mapOfN[Int,String](5,unifRand,alphaStr))
Careful with final size of Sets
and Maps
!
class Gen[+T] {
def suchThat(f: T => Boolean): Gen[T]
def map[U](f: (T) => U): Gen[U]
def flatMap[U](f: (T) => Gen[U]): Gen[U]
}
val gL1: Gen[List[Int]] = Gen.listOfN(5,Gen.choose(0,100))
val gL2: Gen[List[Int]] = gL1 suchThat (_.sum % 2 == 0)
// RECALL! gL2.sample returns Option[List[Int]]
val gI: Gen[Int] = Gen.choose(0,100) map (_ * 2)
val gB: Gen[Boolean] = Gen.choose(0,1) map (_ == 0)
case class User(name: String, age: Int)
val userGen: Gen[User] =
for {
name <- Gen.alphaStr
age <- Gen.choose(0,200)
} yield User(name, age)
val gLU1: Gen[List[User]] = Gen.listOfN[User](100, userGen)
val gLU2: Gen[List[User]] = Gen.choose(0,10) flatMap
(i => Gen.listOfN[User](i,userGen)
Arbitrary
)
case class User(name:String, age:Int)
// Let's assume we have a generator for our class 'User', userGen
// How can ScalaCheck find it?
Prop.forAll{(u:User) => u.name != ""} // Error!
// First solution, pass the gen explicitly:
Prop.forAll(userGen){(u:User) => u.name != ""} // Will work
// Second solution: use Arbitrary
// Scala uses instances of Arbitrary (which encapsulate a Gen)
// to get the generators required by its properties.
implicit val arbUserGen: Arbitrary[User] = Arbitrary(userGen)
Prop.forAll{(u:User) => u.name != ""} // Will work
// Now the gen will be available everywhere by Arbitrary
val uG2: Gen[User] = Arbitrary.arbitrary[User] //uG2 eq userGen
// Several Arbitrary types are predefined:
val gI: Gen[Int] = Arbitrary.arbitrary[Int]
val gS: Gen[String] = Arbitrary.arbitrary[String] // :)
// Also for BitSet, Date, BigInt, Future...
arbitrary[Int] != Gen.choose(Int.MinValue, Int.MaxValue)
// Arbitrary.scala:88
implicit lazy val arbInt: Arbitrary[Int] = Arbitrary(
Gen.chooseNum(Int.MinValue, Int.MaxValue)
)
// Gen.scala:570
def chooseNum[T](minT: T, maxT: T, specials: T*)(
implicit num: Numeric[T], c: Choose[T]
): Gen[T] = {
import num._
val basics = List(minT, maxT, zero, one, -one)
val basicsAndSpecials = for {
t <- specials ++ basics if t >= minT && t <= maxT
} yield (1, const(t))
val allGens = basicsAndSpecials ++ List(
(basicsAndSpecials.length, c.choose(minT, maxT)) )
// allGens is now (if specials is empty)
// ( (1,minT),(1,maxT),(1,zero),(1,one),(1,-one),
// (5,choose(minT,maxT)) )
frequency(allGens: _*)
}
Aka Testing Case Minimization, done if error in property
It needs an implicit Shrink[T]
instance
sealed abstract class Shrink[T] {
def shrink(x: T): Stream[T] // Shrinking T instances
}
Implementations for common types are available
implicit lazy val shrinkInt: Shrink[Int] = Shrink { n =>
def halfs(n: Int): Stream[Int] =
if(n == 0) empty else cons(n, halfs(n/2))
if(n == 0) empty else {
val ns = halfs(n/2).map(n - _)
cons(0, interleave(ns, ns.map(-1 * _)))
}
} // Shrink.shrinkInt.shrink(100) take 20 foreach println
// Shrink.shrink[Int](100)
What about stateful systems?
Welcome the org.scalacheck.Commands
package
flatMap
associativity in monads)
$ scala -cp [scalacheck & scalaz (core and scalacheck bind) jars]
scala> :paste
import scalaz._
import Scalaz._
import scalacheck.ScalazProperties._
import scalacheck.ScalazArbitrary._
import scalacheck.ScalaCheckBinding._
scala> functor.laws[List].check
scala> monad.laws[List].check